Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 285(43): 33529-33539, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20720015

RESUMO

LptC is a conserved bitopic inner membrane protein from Escherichia coli involved in the export of lipopolysaccharide from its site of synthesis in the cytoplasmic membrane to the outer membrane. LptC forms a complex with the ATP-binding cassette transporter, LptBFG, which is thought to facilitate the extraction of lipopolysaccharide from the inner membrane and release it into a translocation pathway that includes the putative periplasmic chaperone LptA. Cysteine modification experiments established that the catalytic domain of LptC is oriented toward the periplasm. The structure of the periplasmic domain is described at a resolution of 2.2-Å from x-ray crystallographic data. The periplasmic domain of LptC consists of a twisted boat structure with two ß-sheets in apposition to each other. The ß-sheets contain seven and eight antiparallel ß-strands, respectively. This structure bears a high degree of resemblance to the crystal structure of LptA. Like LptA, LptC binds lipopolysaccharide in vitro. In vitro, LptA can displace lipopolysaccharide from LptC (but not vice versa), consistent with their locations and their proposed placement in a unidirectional export pathway.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/fisiologia , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/genética , Proteínas de Membrana/genética , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
3.
J Biol Chem ; 283(29): 20342-9, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18480051

RESUMO

The LptA protein of Escherichia coli has been implicated in the transport of lipopolysaccharide (LPS) from the inner membrane to the outer membrane. Here we provide evidence that LptA binds structurally diverse LPS substrates in vitro and demonstrate that it interacts specifically with the lipid A domain of LPS. These results are consistent with LptA playing a chaperone role in the transport of LPS across the periplasm and have implications for possible assembly models.


Assuntos
Aciltransferases/metabolismo , Escherichia coli/metabolismo , Lipídeo A/metabolismo , Lipopolissacarídeos/metabolismo , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Escherichia coli/genética , Lipídeo A/química , Estrutura Molecular , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Solubilidade , Especificidade por Substrato
4.
Mol Microbiol ; 67(2): 264-77, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18047581

RESUMO

One-third of the lipid A found in the Escherichia coli outer membrane contains an unsubstituted diphosphate unit at position 1 (lipid A 1-diphosphate). We now report an inner membrane enzyme, LpxT (YeiU), which specifically transfers a phosphate group to lipid A, forming the 1-diphosphate species. (32)P-labelled lipid A obtained from lpxT mutants do not produce lipid A 1-diphosphate. In vitro assays with Kdo(2)-[4'-(32)P]lipid A as the acceptor shows that LpxT uses undecaprenyl pyrophosphate as the substrate donor. Inhibition of lipid A 1-diphosphate formation in wild-type bacteria was demonstrated by sequestering undecaprenyl pyrophosphate with the cyclic polypeptide antibiotic bacitracin, providing evidence that undecaprenyl pyrophosphate serves as the donor substrate within whole bacteria. LpxT-catalysed phosphorylation is dependent upon transport of lipid A across the inner membrane by MsbA, a lipid A flippase, indicating a periplasmic active site. In conclusion, we demonstrate a novel pathway in the periplasmic modification of lipid A that is directly linked to the synthesis of undecaprenyl phosphate, an essential carrier lipid required for the synthesis of various bacterial polymers, such as peptidoglycan.


Assuntos
Lipídeo A/metabolismo , Periplasma/enzimologia , Fosfatos de Poli-Isoprenil/biossíntese , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Bacitracina/farmacologia , Proteínas de Bactérias/metabolismo , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Lipídeo A/antagonistas & inibidores , Lipídeos de Membrana/metabolismo , Mutação , Peptidil Transferases/metabolismo , Fosfatos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfatos de Poli-Isoprenil/antagonistas & inibidores , Fosfatos de Poli-Isoprenil/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo
5.
J Endotoxin Res ; 12(4): 205-23, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16953973

RESUMO

Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions--lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.


Assuntos
Infecções Bacterianas/microbiologia , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Animais , Infecções Bacterianas/imunologia , Parede Celular/metabolismo , Bactérias Gram-Negativas/patogenicidade , Humanos , Lipídeo A/biossíntese , Lipídeo A/química , Lipídeo A/imunologia , Lipopolissacarídeos/imunologia , Estrutura Molecular , Antígenos O/biossíntese , Antígenos O/química , Antígenos O/imunologia , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Oligossacarídeos/imunologia , Receptor 4 Toll-Like/imunologia
6.
J Bacteriol ; 188(12): 4531-41, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16740959

RESUMO

Modification of the phosphate groups of lipid A with amine-containing substituents, such as phosphoethanolamine, reduces the overall net negative charge of gram-negative bacterial lipopolysaccharide, thereby lowering its affinity to cationic antimicrobial peptides. Modification of the 1 position of Helicobacter pylori lipid A is a two-step process involving the removal of the 1-phosphate group by a lipid A phosphatase, LpxEHP (Hp0021), followed by the addition of a phosphoethanolamine residue catalyzed by EptAHP (Hp0022). To demonstrate the importance of modifying the 1 position of H. pylori lipid A, we generated LpxEHP-deficient mutants in various H. pylori strains by insertion of a chloramphenicol resistance cassette into lpxEHP and examined the significance of LpxE with respect to cationic antimicrobial peptide resistance. Using both mass spectrometry analysis and an in vitro assay system, we showed that the loss of LpxEHP activity in various H. pylori strains resulted in the loss of modification of the 1 position of H. pylori lipid A, thus confirming the function of LpxEHP. Due to its unique lipid A structure, H. pylori is highly resistant to the antimicrobial peptide polymyxin (MIC > 250 microg/ml). However, disruption of lpxEHP in H. pylori results in a dramatic decrease in polymyxin resistance (MIC, 10 microg/ml). In conclusion, we have characterized the first gram-negative LpxE-deficient mutant and have shown the importance of modifying the 1 position of H. pylori lipid A for resistance to polymyxin.


Assuntos
Helicobacter pylori/enzimologia , Monoéster Fosfórico Hidrolases/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Farmacorresistência Bacteriana , Etanolaminas , Helicobacter pylori/efeitos dos fármacos , Lipídeo A/química , Lipídeo A/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Polimixinas/farmacologia
7.
J Biol Chem ; 280(31): 28186-94, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15951433

RESUMO

Attachment of positively charged, amine-containing residues such as 4-amino-4-deoxy-l-arabinose (l-Ara4N) and phosphoethanolamine (pEtN) to Escherichia coli and Salmonella typhimurium lipid A is required for resistance to the cationic antimicrobial peptide, polymyxin. In an attempt to discover additional lipid A modifications important for polymyxin resistance, we generated polymyxin-sensitive mutants of an E. coli pmrA(C) strain, WD101. A subset of polymyxin-sensitive mutants produced a lipid A that lacked both the 3'-acyloxyacyl-linked myristate (C(14)) and l-Ara4N, even though the necessary enzymatic machinery required to synthesize l-Ara4N-modified lipid A was present. Inactivation of lpxM in both E. coli and S. typhimurium resulted in the loss of l-Ara4N addition, as well as, increased sensitivity to polymyxin. However, decoration of the lipid A phosphate groups with pEtN residues was not effected in lpxM mutants. In summary, we demonstrate that attachment of l-Ara4N to the phosphate groups of lipid A and the subsequent resistance to polymyxin is dependent upon the presence of the secondary linked myristoyl group.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Lipídeo A/metabolismo , Ácido Mirístico/metabolismo , Polimixinas/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Hexosiltransferases/metabolismo , Lipídeo A/química , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Endotoxin Res ; 11(3): 161-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15949144

RESUMO

Modification of the lipid A domain of lipopolysaccharide (LPS) has been reported to contribute to the virulence and pathogenesis of various Gram-negative bacteria. The Kdo (3-deoxy-D-manno-octulosonic acid)-lipid A domain of Helicobacter pylori LPS shows several differences to that of Escherichia coli. It has fewer acyl chains, a reduced number of phosphate groups, much lower immunobiological activity, and only a single Kdo sugar is attached to the disaccharide backbone. However, H. pylori synthesizes a minor lipid A species resembling that of E. coli, which is both bis-phosphorylated and hexa-acylated suggesting that the major species results from the action of specific modifying enzymes. This work describes two enzymes, a lipid A phosphatase and a phosphoethanolamine transferase, involved in the periplasmic modification of the 1-position of H. pylori lipid A. Furthermore, we report a novel Kdo trimming enzyme that requires prior removal of the 1-phosphate group for enzymatic activity. Discovery of the enzymatic machinery involved in the remodeling of H. pylori LPS will help unravel the importance of these modifications in H. pylori pathogenesis.


Assuntos
Helicobacter pylori , Lipídeo A/metabolismo , Etanolaminofosfotransferase/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia
9.
J Biol Chem ; 279(53): 55780-91, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15489235

RESUMO

Pathogenic bacteria modify the lipid A portion of their lipopolysaccharide to help evade the host innate immune response. Modification of the negatively charged phosphate groups of lipid A aids in resistance to cationic antimicrobial peptides targeting the bacterial cell surface. The lipid A of Helicobacter pylori contains a phosphoethanolamine (pEtN) unit directly linked to the 1-position of the disaccharide backbone. This is in contrast to the pEtN units found in other pathogenic Gram-negative bacteria, which are attached to the lipid A phosphate group to form a pyrophosphate linkage. This study describes two enzymes involved in the periplasmic modification of the 1-phosphate group of H. pylori lipid A. By using an in vitro assay system, we demonstrate the presence of lipid A 1-phosphatase activity in membranes of H. pylori. In an attempt to identify genes encoding possible lipid A phosphatases, we cloned four putative orthologs of Escherichia coli pgpB, the phosphatidylglycerol-phosphate phosphatase, from H. pylori 26695. One of these orthologs, Hp0021, is the structural gene for the lipid A 1-phosphatase and is required for removal of the 1-phosphate group from mature lipid A in an in vitro assay system. Heterologous expression of Hp0021 in E. coli resulted in the highly selective removal of the 1-phosphate group from E. coli lipid A, as demonstrated by mass spectrometry. We also identified the structural gene for the H. pylori lipid A pEtN transferase (Hp0022). Mass spectrometric analysis of the lipid A isolated from E. coli expressing Hp0021 and Hp0022 shows the addition of a single pEtN group at the 1-position, confirming that Hp0022 is responsible for the addition of a pEtN unit at the 1-position in H. pylori lipid A. In summary, we demonstrate that modification of the 1-phosphate group of H. pylori lipid A requires two enzymatic steps.


Assuntos
Helicobacter pylori/metabolismo , Lipídeo A/química , Transportadores de Cassetes de Ligação de ATP/química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Bactérias/química , Sequência de Carboidratos , Membrana Celular/metabolismo , Sistema Livre de Células , Clonagem Molecular , DNA/química , Detergentes/farmacologia , Escherichia coli/metabolismo , Etanolaminas/química , Vetores Genéticos/metabolismo , Genótipo , Espectrometria de Massas , Modelos Biológicos , Modelos Químicos , Dados de Sequência Molecular , Oligonucleotídeos/química , Fosfatos/química , Monoéster Fosfórico Hidrolases/química , Regiões Promotoras Genéticas , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...